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MONOTONICITY PRINCIPLE IN THE RAYLEIGH PROBLEM

FOR AN ISOTHERMALLY INCOMPRESSIBLE FLUID

UDC 536.25: 517.958M. Yu. Tyaglov

The convection of an isothermally incompressible fluid in a horizontal layer with free undeformable
boundaries kept at a constant temperature is considered. Under the fairly common assumptions of
the temperature dependence of the specific volume, it is shown that the monotonicity principle holds
and that the spectrum of critical Rayleigh numbers is countable and prime. Models with linear and
quadratic temperature dependences of the specific volume are given as examples. The results on the
spectrum of the critical Rayleigh numbers are also valid for some other boundary conditions.

Key words: convection, isothermally incompressible fluid, monotonicity principle, Rayleigh num-
ber, oscillation operators.

1. Formulation of the Problem. Let a viscous heat-conducting fluid fill an infinite horizontal layer of
thickness H , bounded by free undeformable boundaries kept at constant temperatures: T1 on the bottom wall and
T2 on the top wall (T2 < T1, i.e., the layer is heated from below). The fluid is acted upon by gravity with an
acceleration g.

We assume that the fluid is isothermally incompressible, i.e., its specific volume V depends only on the
temperature. Let the function V (T ) be given by the formula

V = Ṽ (1 + γF (T )), V (T ) > 0, (1.1)

where γ > 0 is a constant; F (T ) is a continuously differentiable function, F (T̃ ) = 0, Ṽ = V (T̃ ), and T̃ < T1 is a
certain temperature value.

The heat-transfer equation can be considerably simplified by assuming that the viscosity η, thermal conduc-
tivity κ, and specific heat at constant pressure cp are constants and that the change in the potential energy of a fluid
particle due to convection is small compared to the change in the internal energy. Under the above assumptions,
the convection equations and the boundary conditions for the velocity v, temperature T , and pressure p are written
as [1]

∂ρ

∂t
+ div (ρv) = 0, ρ =

1
V (T )

,

ρ
(∂v

∂t
+ v∇v

)
= −∇p + ηΔv − ρgk, ρ

(∂T

∂t
+ v∇T

)
= κΔT,

T
∣∣∣
z=0

= T1, T
∣∣∣
z=H

= T2,

∂v1

∂z

∣∣∣
z=0,H

=
∂v2

∂z

∣∣∣
z=0,H

= v3

∣∣∣
z=0,H

= 0,

where k = (0, 0, 1) is the unit vector of the axis directed upward and g = −gk.
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Following [2], we make the variables dimensionless. As the length and temperature scales, we use the
characteristic size h and the characteristic temperature difference Θ = T1 − T̃ . The temperature of the lower
boundary of the layer T1 will be considered initial. As the time unit we use τ =

√
h/(αgΘ) is the characteristic

time of convective rise of a heated fluid particle (or immersion of a cooled particle) (α is the average volume-
expansion coefficient of the fluid). For the specific volume, velocity, and pressure we use the scales Ṽ , h/τ , and
ghαΘ/Ṽ , respectively. Retaining the former notation for the dimensionless variables, we have

∂ρ

∂t
+ div (ρv) = 0, ρ = V (T )−1, V (T ) = 1 + βΦ(T ),

ρ
(∂v

∂t
+ v∇v

)
= −∇p + μΔv − β−1(ρ − 1)k, ρ

(∂T

∂t
+ v∇T

)
= δΔT ;

(1.2)

T
∣∣∣
z=0

= 0, T
∣∣∣
z=l

= −l; (1.3)

∂v1

∂z

∣∣∣
z=0,l

=
∂v2

∂z

∣∣∣
z=0,l

= v3

∣∣∣
z=0,l

= 0, (1.4)

where β = αΘ, μ = ητṼ /h2, and δ = κτṼ /(h2cp) are the dimensionless thermal-expansion coefficient, viscosity,
and thermal conductivity, respectively [2], l = H/h is the dimensionless thickness of the layer, and Φ(T ) = F (TΘ+
T1)/F (T1) is a continuously differentiable function [Φ(−1) = 0].

Next, we assume that β ≥ 0 and consider only fluids expanding under heating (in the case of no density
inversion).

Problem (1.2)–(1.4) has a steady-state solution which corresponds to the mechanical equilibrium of the fluid:

v0 = 0, T0 = −z, p0 = β−1

l∫

z

[ρ(−s) − 1] ds + const. (1.5)

Because the equilibrium temperature profile is linear, it follows that l = (T1 − T2)/Θ.
Since Φ(T ) is a continuously differentiable function, the dependence V (T ) in the vicinity of the point T̃ can

be written as

V (T̃ + T ) = 1 + βΦ(T̃ ) + β
∂Φ
∂T

∣∣∣
T=T̃

T + βO(T 2), T → 0. (1.6)

The secondary solutions p′, v′, and T ′ of problem (1.2)–(1.4) will be sought in the form

p′ = p0 + μδp, v′ = v0 + δv, T ′ = T0 + T. (1.7)

Substituting (1.7) into (1.2)–(1.4) and using (1.5) and (1.6), we obtain the following nonlinear system for pertur-
bations of p, v, and T (the primes are omitted):

V (T − z) = 1 + βΦ(T − z),

β
∂Φ
∂T

∣∣∣
T=−z

(∂T

∂t
− v3 + v∇T

)
= V (T − z) div v,

Pr−1ρ(T − z)
(∂v

∂t
+ v∇v

)
= −∇p + Δv + Rρ0ρ(T − z)

(∂Φ
∂T

∣∣∣
T=−z

T + O(T 2)
)
k,

(1.8)

ρ(T − z)
(∂T

∂t
− v3 + v∇T

)
= ΔT.

Here ρ0 = ρ0(z) = ρ(−z) is the density in the equilibrium state (1.5) and R = (μδ)−1 and Pr = μδ−1 are the
Rayleigh and Prandtl numbers, respectively [2]. Because the function of the specific volume (1.1) is positive, the
equilibrium density ρ0(z) = V (−z)−1 is positive in the interval z ∈ [0, l].

From (1.3) and (1.4), we obtain the following boundary conditions for the temperature and velocity pertur-
bations:

T
∣∣∣
z=0

= 0, T
∣∣∣
z=l

= 0; (1.9)

650



∂v1

∂z

∣∣∣
z=0,l

=
∂v2

∂z

∣∣∣
z=0,l

= 0, v3

∣∣∣
z=0,l

= 0. (1.10)

The linearized system for the perturbations that corresponds to (1.8) is written as

βρ0(z)φ(z)
(∂T

∂t
− v3

)
= div v,

Pr−1ρ0(z)
∂v

∂t
= Δv −∇p + Rρ2

0(z)φ(z)Tk, (1.11)

ρ0(z)
(∂T

∂t
− v3

)
= ΔT,

where φ(z) = (∂Φ/∂T )
∣∣∣
T=−z

is a continuous function.

2. Spectral Problem. Monotonicity Principle. The nontrivial solutions of the boundary-value problem
(1.11), (1.9), (1.10) that are periodic in the variable x1 with period 2π/k1 and in the variable x2 with period 2π/k2

are sough in the form

v(x1, x2, z) = U(z) exp(−σt + ik1x1 + ik2x2),

T (x1, x2, z) = θ(z) exp(−σt + ik1x1 + ik2x2), p(x1, x2, z) = p(z) exp(−σt + ik1x1 + ik2x2),

where k1 and k2 are wavenumbers and σ is the perturbation decrement, which generally can be complex. It is
assumed that the average fluid mass flow in the directions x1 and x2 is absent:

π/k2∫

−π/k2

l∫

0

ρv1 dx2 dx3 =

π/k1∫

−π/k1

l∫

0

ρv2 dx1 dx3 = 0.

Separating the variables, we obtain the following spectral problem for ordinary differential equations:

f0Dw + F = −σβρ0φθ; (2.1)

LF + k2p = −σPr−1ρ0F ; (2.2)

Lw − Dp + Rφρ2
0θ = −σPr−1w; (2.3)

Lθ + w = −σρ0θ; (2.4)

z = 0, l: θ = w = DF = 0. (2.5)

Here ρ0(z) = ρ(−z), f0(z) = ρ0(z)−1, w = ρ0U3, F = ik1U1 + ik2U2, D = d/dz, k2 = k2
1 + k2

2 , and L = D2 − k2.
Let us show that the monotonicity principle holds in this case, i.e., that the condition Re σ = 0 implies

Im σ = 0. Eliminating the functions F , p, and w from system (2.1)–(2.5), for the unknown function θ we obtain
the following boundary-value eigenvalue problem for the perturbation decrements σ:

−LNLθ − σ
( 1

Pr
+ 1

)
L2θ − σ2

Pr
Mθ = Rk2φρ2

0θ; (2.6)

z = 0, l: θ = Lθ = NLθ = 0. (2.7)

Here the differential expressions for N and M are written as

N = D[f0D] − k2f0, M = D[ρ0D] − k2ρ0. (2.8)

Along with the solution θ of system (2.6), (2.7), we examine the complex conjugate solution θ. Multiplying
Eq. (2.6) into θ and integrating it by parts with respect to z from 0 to l, we obtain

σ2I1 − σI2 + I3 = RI4, (2.9)
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where the quantities

I1 =
1

Pr

( l∫

0

ρ0|Dθ|2dz + k2

l∫

0

ρ0|θ|2dz
)
,

I2 =
( 1

Pr
+ 1

) l∫

0

|Lθ|2dz, I3 =

l∫

0

f0|DLθ|2dz

are positive because θ(z) is a nontrivial solution of problem (2.6), (2.7), and the quantity I4 = k2

l∫

0

φρ2
0|θ|2dz is

real. Dividing the imaginary and real parts in Eq. 2.9), we have

Im σ(2 Re σI1 − I2) = 0. (2.10)

According to (2.10), Imσ = 0 or Re σ = I2/(2I1) > 0. Hence, oscillatory modes can occur only in the case of
stability (Re σ > 0). Thus, the monotonicity principle is proved.

We note that the above proof takes into account the cases of negative critical Rayleigh numbers, such as,
for example, those in the penetrative convection model [3–5].

Remark 1. In the case of different boundary conditions, we were unable to prove the absence of oscillatory
instability. Numerical calculations [6] show that, in the case of two solid walls, oscillatory stability occurs under
heating from both below and from above, while oscillatory instability has not been found numerically [4, 6].

3. Spectrum of Critical Rayleigh Numbers. Setting σ = 0 in (2.6) and (2.7), we consider the system
of equations for neutral perturbations:

−LNLθ = Rk2φρ2
0θ; (3.1)

z = 0, l: θ = Lθ = NLθ = 0. (3.2)

Problem (3.1), (3.2) is an eigenvalue problem, in which the critical Rayleigh numbers play the role of eigenvalues.
We study fluids of two types: normal and abnormal. Fluids expanding monotonically under heating will be

called normal fluids. In this case, ∂F/∂T > 0 for all T ∈ [T2, T1] and φ(z) > 0 for all z ∈ [0, l] (here it is assumed
that h = H , T̃ = T2, and Ṽ = V (T2), and hence l = 1). This class of fluids includes, for example, fluids with a
linear temperature dependence of the specific volume V = Ṽ (1 + α(T − T2)).

Fluids with density inversion will be called abnormal fluids. A fluid is considered normal if there are no
density inversion points in the interval (T2, T1) and the fluid expands under heating. At the density inversion points,
the function ∂F/∂T changes sign. We will further consider only the case where in the interval (T2, T1) this function
changes sign once at the point T∗. Then, the function φ(z) also changes sign once at the point z = 1 [here we set
h = HΘ/(T1 − T2), T̃ = T∗, and Ṽ = V (T∗), and hence l = H/h > 1]. As an example of such fluids is water at
atmospheric pressure (see, e.g., [3–5]), for which the inversion temperature T∗ ≈ 4◦C and V = Ṽ (1 + γ(T − T∗)2)
at T1 > 4◦C and T2 < 4◦C.

Remark 2. In the case of abnormal fluids, it is of no insignificance whether the layer is heated from below
or from above; therefore, the further results obtained for fluids with specific volume inversion are also valid for
T2 > T1 (in this case, negative critical numbers Rayleigh appear).

Let β∗ > 0 be the first number such that ρ0(z0, β∗) = 0 for a certain z0 in the interval [0, l] [if ρ0(z, β∗) > 0
for any z ∈ [0, l] and β > 0, we set β∗ = ∞]. Then, the following theorem holds.

Theorem 1. Let β ∈ [0, β∗), k ≥ 0. Then, for a normal fluid [φ(z) > 0], the spectrum of problem (3.1),
(3.2) consists of a countable number of positive prime eigenvalues

0 < R1 < R2 < R3 < . . . ,

and for an abnormal fluid, [φ(z) changes sign once], it consists of a countable number of positive and negative prime
eigenvalues

. . . < R−3 < R−2 < R−1 < 0 < R1 < R2 < R3 < . . . .
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To prove the theorem, we use the following lemma [7].
Lemma 1. We consider the differential expression of the second order

M2 =
d

dz

[
f1(z)

d

dz

]
− f2(z).

Let f1(z)f2(z) > 0 ∀z ∈ [a, b]. Then, M2 can be factorized, i.e., represented as

M2 =
1
y

d

dz
f1y

2 d

dz

1
y
,

where y(z) is the solution of the equation M2y = 0 that does not have zeros in the interval [a, b].
The differential expression of N from (2.8) defined in the interval [0, l] satisfies the conditions of Lemma 1

and, hence, can be factorized with positive weights:

N = ρ1
d

dz
ρ2

d

dz
ρ3 (3.3)

(ρ1 = ρ3 = 1/u, ρ2 = f0u
2, and u is the solution of the equation Nu = 0 that does not have zeros on the interval

[0, l]).
Lemma 1 also implies the well-known factorization

L = e−kz d

dz
e2z d

dz
e−kz . (3.4)

Next, we use the following theorems.
Theorem 2 (Kalafati–Gantmacher–Krein [8, 9]). In the spectral problem

L1y = l0y
(n) + l1y

(n−1) + . . . + lny = λry,

Uiy = y(qi)(a) +
∑
q<qi

γiqy
(q)(a) = 0, i = 1, . . . , m, (3.5)

Uiy = y(qi)(b) +
∑
q<qi

γiqy
(q)(b) = 0, i = m + 1, . . . , n,

where γiq are real, l0(x), l1(x), . . . , ln(x) are smooth real functions in [a, b], l0(x) 	= 0, r(x) is a continuous function
positive in [a, b], 1 ≤ m ≤ n − 1, 0 ≤ q1 < . . . < qm ≤ n − 1, and 0 ≤ qm+1 < . . . < qn ≤ n − 1, let the differential
expression of L1y admit the factorization

L1y = r0
d

dz
r1

d

dz
· · · rn−1

d

dz
rny,

where (−1)n−mr0(x) · · · rn(x) > 0 (a ≤ x ≤ b), and let the boundary conditions be nonsingular and representable as
n∑

q=1

αiq(Dq−1y)(a) = 0, i = 1, 2, . . . , m,

n∑
q=1

βiq(Dq−1y)(b) = 0, i = 1, 2, . . . , n − m;
(3.6)

D0u = rnu, Dmu = rn−m
d

dz
[Dm−1u]. (3.7)

If all nonzero minors of order m of the matrix

A = ‖(−1)qαiq‖ (i = 1, . . . , m; q = 1, . . . , n)

have identical signs and the same is valid for the minors of order (n − m) of the matrix

B = ‖βiq‖ (i = 1, . . . , n − m; q = 1, . . . , n),

the boundary-value problem (3.5) has oscillatory Green’s function G(x, t) and, hence, a prime positive real spectrum

0 < λ1 < λ2 < λ3 < . . . .
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Theorem 3 (of Barkovskii–Yudovich[10]). In the conditions of Theorem 2, if the function r(x) in [a, b]
changes sign once, the boundary-value problem (3.5) has a countable number of prime negative and prime positive
eigenvalues

. . . < λ−3 < λ−2 < λ−1 < 0 < λ1 < λ2 < λ3 < . . . .

To prove Theorem 1, we write (3.1) and (3.2) as

−f2
0 LNLθ = Rk2φθ; (3.8)

z = 0, l: θ = Lθ = NLθ = 0. (3.9)

From (3.3) and (3.4) it follows that the differential expression f2
0 LNL can be factorized with positive weights:

f2
0 LNL = r0

d

dz
r1

d

dz
r2

d

dz
r3

d

dz
r4

d

dz
r5

d

dz
r6, (3.10)

which are given by the equalities r0 = f2
0 e−kz, r1 = r5 = e2kz , r2 = e−kz ρ1, r3 = ρ2, r4 = ρ3 e−kz , and r6 = e−kz .

Using the notation (3.7), in which n = 6 and m = 3, we reduce problem (3.8), (3.9) to the form

−D6θ = Rk2φθ;

z = 0, l: D0θ = D2θ = D4θ = 0. (3.11)

Boundary conditions (3.11) can be written in the form of (3.6), where the matrices A = (αiq) and B = (βjq) have
the form

A = B =

⎛
⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎠ .

It is obvious that all nonzero minors of the 3rd order of these matrices are positive. In the case where φ(z) > 0
in the interval z ∈ [0, l] for any β ∈ [0, β∗) and k ≥ 0, the boundary-value problem (3.8), (3.9), in view of (3.10),
satisfies the conditions of Theorem 2, which implies the statement of the first part of Theorem 1. If the function
φ(z) changes sign once in the interval z ∈ [0, l] for any β ∈ [0, β∗) and k ≥ 0, the positiveness of all minors of the 3rd
order of the matrices A and B and the factorization (3.10) allow Theorem 3 to be applied to the spectral problem
(3.8), (3.9). Theorem 3 implies the statement of the second part of Theorem 1. Theorem 1 is proved.

Remark 3. If φ(z) > 0, the boundary-value problem (3.8), (3.9) has oscillatory Green’s function under
Theorem 2. According to the theory of integral operators with oscillatory kernels [9], the eigenvector-function
of this problem (θ1, w1) that corresponds to the minimum eigenvalue R1 does not change sign in [0, l], and the
eigenector-function (θn, wn) corresponding to the nth (in modulus) eigenvalue Rn changes sign n− 1 times in [0, l].

Remark 4. Theorem 1 is valid, for example, for the cases where the boundaries of the layer are solid walls
or where one of them is a solid wall and the other is a free undeformable boundary. Then, on the boundary instead
of the condition DF = 0 [see (2.5)], the condition F = 0 is valid and the spectral problem changes accordingly:
instead of NLθ = 0, we have DLθ = 0.

Let us consider some examples.
3.1. Linear Temperature Dependence of Specific Volume. In his case, the function V (T ) is written as

V = Ṽ (1 + α(T − T̃ )). (3.12)

As shown in [11], for this (and only this) temperature dependence of the specific volume, the specific heat at constant
pressure cp does not depend on pressure (see also [2, 4, 6, 12–14]).

Since the dependence ∂V/∂T = Ṽ α does not have zeros, we can set T̃ = T2. Then, l = 1 and φ(z) ≡ 1, and,
under Theorem 1, the spectrum of the critical Rayleigh numbers consists of a countable numbers of prime positive
eigenvalues (critical Rayleigh numbers).

Remark 5. The statements of Theorem 1 remain valid if β → 0 in (1.11). If the equation of state has
the form (3.12), then, for β → 0 (α → 0), Eq. (1.11) lead to Oberbeck–Boussinesq approximation equations [2, 4,
6, 14]. Then, Theorem 1 implies that the spectrum of critical Rayleigh numbers is positive and prime for the
Oberbeck–Boussinesq approximation [15].
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3.2. Quadratic Temperature Dependence of Specific Volume. We consider a penetrative convection model
with a quadratic temperature dependence of the specific volume [3–5]:

V = Vi(1 + γ(T − T∗)2).

Here Vi is the minimum specific volume, T∗ is the inversion point, γ is a constant, α = γΘ is the average volume-
expansion coefficient of the fluid, β = αΘ = γΘ2 is the thermal expansion parameter, and the derivative ∂V/∂T =
2Viγ(T − T∗) changes sign at the point T∗. Then, l > 1 and, in the interval φ(z) = 2(1 − z), the function z ∈ [0, l]
changes sign once at the point z = 1. According to Theorem 1, in this case, a countable number of positive and
negative prime eigenvalues (critical Rayleigh numbers) exists and imaginary and multiple eigenvalues are absent.

We thank V. I. Yudovich and Yu. S. Barkovskii for useful discussions and V. V. Pukhnachev for help in the
formulation of the problem.
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